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ABSTRACT. Let k be a field finitely generated over Q and denote by I'y its absolute Galois group. For an

abelian variety A over k, a prime p and a character x : T'y, — Z, define A[p>](x) to be the module of p-primary

torsion of A(k) on which I'y, acts as x-multiplication. Assume that x does not appear as a subrepresentation
of the p-adic representation associated with an abelian variety over k. Then A[p™](x) is always finite, but
the exponent of A[p®](x) may depend on A, a priori. Our main result is about the uniform boundedness of
A[p*>°](x) when A varies in a 1-dimensional family. More precisely, if S is a curve over k and A is an abelian
scheme over S, then there exists an integer N := N (A4, S, k,p, x), such that As[p>](x) C As[p"] holds for any
s € S(k). Such a result has been widely open, even when x is trivial, except for the case of elliptic curves.

This arithmetic result is obtained as a corollary of the following geometric result on the p-primary torsion
of abelian varieties over function fields of curves, combined with Mordell’s conjecture (Faltings’ theorem). Let
K be the function field of a curve over an algebraically closed field of characteristic 0 and A an abelian variety
over K. Assume for simplicity that A contains no nontrivial isotrivial subvariety. Then, for any ¢ > 0, there
exists an integer N := N(c, A, S,k,p) > 0 such that A[p>®](K’) C A[p"] for all finite extension K'/K with K’
of genus < ¢. A key ingredient of the proof of this geometric result is a certain result on the number of points
on reduction modulo p™ of p-adic analytic homogeneous spaces.

Our uniform boundedness result when x is the p-adic cyclotomic character, together with certain descent
methods, yields a proof of the 1-dimensional case of (a generalized variant of) the modular tower conjecture,
which was, actually, the original motivation for this work. This is a conjecture arising from the regular inverse
Galois problem, whose original form was posed by M. Fried in the early 1990s.
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1. INTRODUCTION

Fix a prime p and let k be a field of characteristic ¢ # p and let S be a separated, smooth,
geometrically connected curve over k of type (g,r) (that is such that there exists a proper, smooth,

geometrically connected, genus g curve S over k and a degree r etale divisor D C S such that
S =85~ D). Denote by Spec(k(S)) — S the generic point of S.

Given a geometric generic point s : Spec(2) — S denote by IT := m1(S5, s) the etale fundamental
group of S. Recall that, in our situation, it is simply the Galois group of the maximal algebraic
extension of k(S) in 2 which is unramified everywhere on S; in particular, it is a quotient of the
absolute Galois group I'y(g) := Gal(k(S5)*?/k(S)), where k(S5)*® stands for the separable closure of
k(S) in Q.

Now, fix an abelian scheme A — S with generic fiber A, — Spec(k(S)) of dimension d. (We refer
to section 2.1 for the notation used for abelian varieties.) Since A — S is an abelian scheme and
q # p, the natural action of I';(g) on the Tate module T},(A;) factors through II. This, in turn, defines
an action of IT over A,[p"], n > 0 hence over A,[p>]. Finally, for any v € A,[p>], write II, for the
stabilizer of v under IT; it is a closed subgroup of IT of index < |(v)|??, hence it is also open in II,
and, by Galois theory, corresponds to a connected finite etale cover S, — S (defined over a finite
extension k,/k). Similarly, write T,y for the stabilizer of (v) under IT and S(,y — S for the resulting
connected finite etale cover (defined over a finite extension k) /k). The inclusion of open subgroups
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I, C I,y C II yields a commutative diagram of finite etale covers:

Sy —= Sw)

e

S

We will write g, and g,y for the genus of the smooth compactifications of S, X, k and Sy Xk k,
respectively.

Eventually, denote by (A, ) the largest abelian subvariety of A, which is isogenous to an isotrivial
abelian variety (see section 2.1).

We can now state the main geometric result of this paper:

Theorem 1.1. Assume that k is algebraically closed. Then, for any ¢ > 0, there exists an integer
N := N(c, A, S,k,p) > 0 such that for all v € A,[p™] either g, > ¢ or pNv € (A,)o. The same
statement holds if g, is replaced by g, .

Say that a character x : I'y — Zj is non-Tate if it does not appear as a subrepresentation of the
p-adic representation associated with an abelian variety over k. This holds, for instance, if y is the
trivial or the p-adic cyclotomic character, provided k is finitely generated over the prime field. When
X is non-Tate, A[p™](x) is always finite. Theorem 1.1 yields the following corollary about the uniform
boundedness of A[p™>](x) when A varies in a 1-dimensional family.

Corollary 1.2. Assume that k is finitely generated over Q and let x : T'y — Z;, be a non-Tate
character. Then there exists an integer N := N(A, S, k,p,x), such that, for any s € S(k), the T'k-
module As[p>®](x) := {T € As[p™] | °T = x(0)T, o € Ty} is contained in As[p"].

The strategy of the proof of theorem 1.1 is as follows. First, we show that it is enough to prove
the following statement (Theorem 4.1): Assume that A, contains no nontrivial abelian subvariety
isogenous to an isotrivial abelian variety, and, for any v € Ty(A,)*, set v, := v mod p"T,(A,) €
Aplp"]*, n > 0. Then gy, — 0o and g,y —+ 00 (n — 00).

Then, to any v € T,(A,)* associate the II-module M := Q,[IIJv N T},(A,) and denote by II(n) the
kernel of the reduction morphism GL(M) — GL(M/p™). The inclusion of open subgroups II(n) C
I1,, C II corresponds to a sequence of finite etale covers S(n) — S,, — S, with S(n) — S Galois,
which makes it easier to handle. We first prove that the genus g(n) of S(n) goes to infinity with n. This
is achieved by using the fact that the image of IT in GL(M) cannot be almost-abelian (section 2.3).
Then, using the Riemann-Hurwitz formula, we compare g(n) and g,, and show that the “increasing
rate” of g, is “close enough” to that of g(n) for n > 0. This relies on the asymptotic bound given
by J. Oesterlé for the number of points on reduction modulo p" of p-adic analytic subspaces of Z".
The proof of the variant for g, is along the same lines but working with the projectivization of the
representation of II over M.

To deduce corollary 1.2 from theorem 1.1, we introduce a sequence of (disconnected) finite etale
covers Spy1,, — Sp, 0f S with the property that k-rational points s, : Spec(k) — S, lying above
s : Spec(k) — S correspond to elements of order exactly p™ in As[p™](x). It is thus enough to

prove that S, (k) = 0 for n > 0. According to theorem 1.1, S, can be written as a disjoint

union S, , = ST%)( ]_[8782,))(, where ST%)( corresponds to the “isotrivial part” of A,[p"] and ST%)( to the

(1)

“non-isotrivial” one. On one hand, we show that Sy (k) = 0 for n > 0, and, on the other hand,

from theorem 1.1, the genus of each component of ST%)( is larger than 2 for n > 0. Applying the
Mordell conjecture (Faltings’ finiteness theorem) and the definition of non-Tate character then yields
the result.



UNIFORM BOUNDEDNESS OF p-PRIMARY TORSION OF ABELIAN SCHEMES 3

Our original motivation for corollary 1.2 was to prove the 1-dimensional case of the modular tower
conjecture. This is a conjecture arising from regular inverse Galois theory, whose original form was
posed by M. Fried in the early 1990s (cf. [Fr95]). A generalized variant of this conjecture roughly
states that if (H,y1 — H,) is a projective system of moduli spaces classifying G-covers of genus ¢
curves equipped with r points, with group G,,, whose ramification only occurs above the given r points,
then, for any field & finitely generated over Q, H, (k) = () for n large enough, provided the projective
limit of (G, 41 — G,) contains an open subgroup which admits a quotient isomorphic to Z,. As the
H,, have dimension 3g — 3 + r (under the hyperbolicity condition 2 — 2g — r < 0), the 1-dimensional
case corresponds to (g,7) = (0,4), (1,1). (The 0-dimensional case corresponds to (g,7) = (0,3) and
is easy to treat. See lemma 5.10.) In that case, we thus have (as a special case of theorem 5.11):
The modular tower conjecture holds for (g,r) = (0,4), (1,1). A typical example of the modular tower
conjecture is when one takes for G, the dihedral group Dgy» of order 2p™ and (g,7) = (0,2s). Then,
roughly speaking, the component of H,, defined by the condition that the corresponding r ramification
indices are all 2 classifies jacobians of genus s — 1 hyperelliptic curve with a torsion point of order
exactly p™. In particular, for s = 2, (H,4+1 — H,) is just the projective system of modular curves
(Y1(p™*1) — Y1(p™)) and, in that special case, the modular tower conjecture can be deduced from the
Mordell conjecture (Faltings’ finiteness theorem) and the fact that l{in Y1(p")(k) = 0. This is the basic

idea (essentially due to Manin [Ma69]) hidden behind our proof of corollary 1.2 and its application to
the modular tower conjecture. In the general case, one has to distinguish between the fine and coarse
moduli situations. If H,, is a fine moduli scheme for n > 0, then one can apply directly corollary 1.2
to the p-adic cyclotomic character and the jacobian Picgo‘ 1, — Ho of the universal curve Cy — Hp.
When H,, is a mere coarse moduli scheme for n > 0, the idea is, roughly, to use descent techniques (see
section 5.2) to construct an auxiliary tower (I:In+1 — I:In) of fine moduli schemes with the property
that H, (k) # 0 as soon as H, (k) # 0.

The paper is organized as follows. In section 2, we list the notation used for abelian varieties
(section 2.1) and collect technical preliminaries about non-Tate characters (section 2.2) and about
almost-abelian p-adic representations (section 2.3). In section 3, we prove a result (theorem 3.1)
concerning reduction modulo p™ of certain p-adic analytic spaces, which is the technical core of our
proofs of the main results. In section 4, the proofs of theorem 1.1 and corollary 1.2 are carried out in
sections 4.1 and 4.2, respectively. Eventually, in section 5, we convey the proof of the 1-dimensional
modular tower conjecture. After recalling the basic notion about G-curves and their stacks (section
5.1), we describe carefully our descent techniques (section 5.2) and apply them together with corollary
1.2 (section 5.3).

Remark 1.3. In [Fr06], Fried outlined a possible proof, which is different from ours, of the original
form of the modular tower conjecture for (g,7) = (0,4).

2. PRELIMINARIES ON ABELIAN SCHEMES

2.1. Notation for abelian varieties. Fix a prime p and let k& be a field of characteristic ¢ # p.
Given an abelian variety A over k, we will use the following (classical) notation:

Alp™] := ker([p"] : A(k) — A(k)) for the kernel of the multiplication-by-p"” endomorphism;
Alp™>] = U A[p"] for the p-primary torsion of A(k);

n>0
Tp(A) := I<E1 A[p"] for the p-adic Tate module of A;

Alp"]* = Alp"] N Ap" ] (AP°] = AP°));
Ty(A)" :=Ty(A) N pTH(A) = l(El Alp"T

Vp(A) :=Ty(A) ®z, Q.
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Next, given an abelian variety A defined over the function field K of a k-curve S, we will write Ag
for the largest abelian subvariety of A which is isogenous to an isotrivial abelian variety. (Here we
say that an abelian variety B over K is isotrivial, if B xx K descends to an abelian variety over k.)
Equivalently, Ag is the largest abelian subvariety of A which is a homomorphic image of an isotrivial
abelian variety. Indeed, if A1 — A, is an epimorphism of abelian varieties, then, by Poincaré’s
complete reducibility theorem, As is isogenous to an abelian subvariety of A;. But as any abelian
subvariety of an isotrivial abelian variety is again isotrivial, if Ay is isotrivial then A, is isogenous to
an isotrivial abelian subvariety of A;. In particular, if A; C A is isogenous to an isotrivial abelian
variety, ¢ = 1,2, then so is Ay + Ay C A (as a homomorphic image of A; x As); thus Ag is well-defined.
(When k has characteristic 0, any abelian variety isogenous to an isotrivial abelian variety is again
isotrivial, so Ay is simply the largest isotrivial subvariety of A.) We define A° to be the quotient
abelian variety A/Ag. Then (again by Poincaré’s complete reducibility theorem) we have (A4%)y = 0.

2.2. Non-Tate characters. Fix a prime p and let £ be a field of characteristic ¢ # p. Let x :
I'y — Z, be a character. Say that x is non-Tate if it does not appear as a subrepresentation of the
p-adic representation associated with an abelian variety over k. When £ is finitely generated over its
prime field, the trivial character and the p-adic cyclotomic character are typical examples of non-Tate
characters.

Lemma 2.1. For any finitely generated extension k' of k, x : Ty — Z,, is non-Tate if and only if
XIr,, : Tk — Zj, is non-Tate.

Proof. First, the ‘if” part is trivial. Indeed, if x appears in T},(A) for some abelian variety A over k,
x|r,, appears in T,(A xj k'). Next, to show the ‘only if’ part, suppose that x|r,, appears in T}, (A’)
for some abelian variety A’ over k'.

Assume first that &’ is a finite extension of k. In this case, one can easily reduce the problem to
the following two cases: k'/k is separable; and k'/k is purely inseparable (for ¢ > 0). In the former
case, define A to be the Weil restriction Res;, /k(A’ ), which is an abelian variety over k& with dimension
(k" : k]dim(A"). Then the adjoint property of Weil restriction implies that x appears in T,,(A). Indeed,
more specifically, let M,, denote the finite etale commutative group scheme over k that corresponds
to the Galois module Z/p™(x») (i-e., the module Z/p™ on which I'j, acts via x,). Then

Homr, (Z,(x), Ty(A)) = lim Homy (M, A) = lim Homy (M, x K, A') = Homr,, (Z,(xIr,, ). T(4").

In the latter case, take N > 0 such that (k)7 C k and set A := A’ xjs k, where k' — k is given
by a' — (a’)qN. Now, since x|r,, appears in T,(A’) by assumption, x = (x|r,,)|r, appears in Tj,(A).
(Here the equality follows from the fact that the ¢’Vth power map k — &, a a?" induces the identity
on Fk.)

Finally, assume that k' is an arbitrary finitely generated extension of k and that X|Fk’ appears in
Ty(A") for some abelian variety A’ over £’. Then, taking a model of A" — Spec(k’) over the spectrum
of a finitely generated k-subalgebra of k' whose fraction field coincides with k¥’ and specializing it at a
closed point, one can show that there exist a finite extension £” of k£ and an abelian variety A” over
E" such that x|r,, appears in T,,(A"). Thus, by the preceding argument, y appears in 7,(A) for some
abelian variety over k. [

2.3. Almost-abelian p-adic representations. Fix a prime p. Let V be a finite-dimensional Q-
vector space. For a property P of subgroups of Autg, (V) (e.g., trivial, abelian, unipotent, pro-p,
etc.), say that a subgroup G of Autg, (V') is almost-P if there exists a closed subgroup H C G of finite
index such that H has P. Further, given a group II and a representation p : IT — Autg, (V), say that
p : II — Autg, (V) is almost-P if the image of p is almost-P (though the standard terminology for
‘almost-unipotent’ may be ‘quasi-unipotent’).

Let k be an algebraically closed field of characteristic ¢ # p and let S be a connected normal scheme
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of finite type over k. Denote by 7 : Spec(k(S)) — S the generic point of S. Let A — S be an abelian
scheme with generic fiber A, — Spec(k(S)), and consider the natural p-adic representation on the
Tate module p : 71 (S) — Autz (T,(Ay)) C Autg, (Vp(Ay)).

Proposition 2.2. Let M be a m1(S)-submodule of T,(A,) and consider the corresponding represen-
tation par : 1 (S) — Autz, (M) C Autg, (M ®z,Q,). Then the following are all equivalent.

(1) par is almost-trivial (i.e., ppr has finite image).

(2) par is almost-abelian.

(3) par is almost-unipotent.

(4) M C Tp((4g)o)-
Proof. (1)=(2). Clear.

(2)=-(3). First observe Autz, (M) ~ GL;,(Zp), where m is the rank of the free Z,-module M. Thus,
from the short exact sequence

1 —= 14+ pMy(Zy) = GLpy(Zp) = GLy(Z/p) — 1,

the group Autz (M) is almost-pro-p. This, together with the assumption that pys is almost-abelian,
assures that one may assume that pys (71 (S)) is an abelian pro-p group, up to replacing S by a finite
etale cover.

Since S is of finite type over k, there exists a subfield ky of k, finitely generated over its prime
field, such that A — S — Spec(k) admits a model A; — S7 — Spec(k1), where S; is a geometrically
connected, geometrically normal scheme of finite type over ky and A; — S is an abelian scheme.
Denote by 7 : Spec(k1(S1)) — S1 the generic point of S; and by Ay, — Spec(k;(S1)) the generic
fiber of A1 — Si. One has a canonical surjection m(S) — m1((S1)z;) ([SGAL, Exp. X, proof of Cor.
1.6]). At the level of Tate modules, one has a canonical isomorphism 7},(A,) =T}, (A1,,) which can be
taken to be compatible with the actions of m (S) and m((S1)z;). Thus, one may assume that k = k1.
Here, observe that T,(A,) = T,(Ai,,) admits a natural action of 71(S1), extending the action of
™ (S) = T ((S1)k)-

Denote by A the maximal abelian pro-p quotient of 71 (S) and by N the kernel of the natural
surjection m1(S) — A. Set II := 71(S1)/N. Thus, one gets the following exact sequence

1 2 A—=I =T — 1.

Since A is abelian, this exact sequence induces a natural action of 'y, on A.

Lemma 2.3. For any finite extension k| of k1, the coinvariant quotient Ar,, is finite.
1

Proof. This fact, together with several ways of proving it, is essentially widely known. For example,
by the theory of (generalized) Albanese varieties (see, e.g., [Mo08, Appendix]), we may reduce the
problem to the case that Sy is a semi-abelian variety over ki. Then, taking a good model of Sy (as a
semi-abelian scheme) over the spectrum of a finitely generated Z-subalgebra R of ki whose fraction
field coincides with kq; defining R’ to be the integral closure of R in k}; choosing a closed point on
Spec(R’) whose residue field has characteristic # p; and considering the action on A of the Frobenius
element at this point, we deduce the desired finiteness. [

As pp(m1(S)) is an abelian pro-p group, pa : mi(S) — Autz (M) factors through A, or, equiv-
alently, M is contained in T,(A,)". Now, up to replacing M by T,(A4,)", one may assume that
M C T,(A;) is a m1(S1)-submodule and that the resulting representation pys : 71(S1) — Auty (M)
factors through II.

Now, define A and II to be the images of A and IT in Autz (M). Set Ry := Z,[A] C Endyz, (M) and
R := Ry ®z,Q,. As Ry is a free Z,-module, the canonical morphism Ry — R is injective, hence so
is Red — R where R = Ry/\/Og, and R := R/\/0r. We shall denote the natural surjection
R — R by f s fr¢ The action of II by conjugation on A extends to one on Ry by Zy-linearity
and to one on R by Q,-linearity. Note that II acts on R not only as Qp-module automorphisms but
also as Q,-algebra automorphisms. In particular, the action of II on R induces one on R"*?. Denote
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by i : Il - IT — Autg,-qg(R) and i"*" : TT — Autg, a9 (R™?) the resulting representations. Observe
that i (hence also i"*?) factors through IT — I',, since A is abelian.

Since R™? is a finite reduced commutative Qp-algebra, it is isomorphic to a product [[,.,., L; of
finite field extensions L;/Q,, i = 1, ...,7 and its Q,-algebra automorphism group is finite. In particular,

i’ has finite image. So, up to replacmg k1 by a finite extensmn one may assume that i"¢% i
Then, if we denote the image of A in (Rj¢4)* C (R™%)* by A", it follows that the natural surjection
A — A factors through Ar‘kl. Thus, by lemma 2.3, A" is finite.

Now, up to replacing S by a finite etale cover, one may assume that A has trivial image in (R"*%)*,
or, equivalently, has unipotent image in R* C Aut(M ®z,Qy), as desired.

(3)=(4). Up to replacing S by a finite etale cover, one may assume that pys is unipotent. Denote by
M? the image of M in T,(A,)/T,((Ay)0) = T,((A,)?), and suppose MY # {0}. Then pyo : m (S) —
Aut(M?) is also unipotent. From this, there exists a v € M? \ {0} such that 71 (S) acts trivially on
v. In particular, this forces the p-primary torsion of (4,)°(k(S)) to be infinite. But this contradicts
the fact that (A,)°(k(S)) is a finitely generated abelian group by the Lang-Néron theorem ([LN59]).
Thus, M? = {0}, as desired.

(4)=(1). Immediate from the definition of (A4,)y. O

Corollary 2.4. The following are all equivalent.

is trivial.

(1) Tp(A ) admits no nonzero w1 (S)-submodule M with pyr almost-trivial.

(2) T,(Ay) admits no nonzero i (S)-submodule M with pyr almost-abelian.

(3) Tp(Ay) admits no nonzero i (S)-submodule M with pyr almost-unipotent.

(4) (A )o = 0.

Proof. (4) is equivalent to T)((Ay)o) = {0}, hence to saying that 7),(A,) admits no nonzero 7 (S)-
submodule M with M C T},((A;)o). Thus, corollary 2.4 1mmedlately follows from proposition 2.2. O

Corollary 2.5. Consider the following conditions:

(1) p is almost-trivial.
(2) p is almost-abelian.
(3) pis almost unipotent.
(4) ( n)o = Ay.
(5) Ay is isotrivial.
Then we have (1) < (2) & (3) < (4) < (5). (In particular, if 71 (S) itself is almost-abelian (i.e.,
admits an abelian open subgroup), then (4) automatically holds.)

If, moreover, q =0, (1)-(5) are all equivalent.
Proof. Applying proposition 2.2 to M = T},(A,), one gets the equivalence of (1)—(4). For (5)=(4) and
(4)=(5) for ¢ =0, see 2.1. OJ
Remark 2.6. In corollary 2.5, the equivalences (1)<(4) and (1)< (5) for ¢ = 0 directly follow from
[G66, Prop. 4.3 and Prop. 4.4].
Remark 2.7. Let X — S be a proper, smooth, geometrically connected curve and apply corollary 2.5
to A = Pic} /s> the jacobian of X — S. Further, consider the following condition: (6) X, is isotrivial.
Then we have (5)<(6). Indeed, (6)=(5) is clear and (5)=>(6) essentially follows from a version of
Torelli’s theorem. We omit the details.

3. REDUCTION MODULO p" OF p-ADIC ANALYTIC HOMOGENEOUS SPACES

The aim of this section is to prove theorem 3.1 concerning reduction modulo p” of certain p-adic
analytic homogeneous spaces, which is the technical core of our proofs of the main results in §4. The
readers who would like to start the proofs of the main results quickly may skip this section, after
glancing at the statement of theorem 3.1.
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Let p be a prime. Let M be a free Zy,-module of rank m > 1 and set M, := M/p", n > 0,
and W := M ®z, Qp. Set GL(M) := Autz, (M) and GL(M,) := Autg (M), n > 0. Let M —
M,,, v — v, denote reduction modulo p" M and GL(M) - GL(M,), g — g, the induced morphism.
As projective versions of these, set P(M) := (M ~\ pM)/Z; and P(M,,) := (M, \ pM,)/(Z/p")*,
n > 0. Set PGL(M) := GL(M)/Z;Id and PGL(M,,) := GL(M,)/(Z/p")*Id, n > 0. Eventually,
denote by M ~ pM — P(M), v — ©v; M, ~ pM,, —» P(M,,), v, — Un; GL(M) - PGL(M), v — 7;
and GL(M,,) - PGL(M,,), v, — 7,, the canonical projectivization morphisms.

Let G be a closed subgroup of GL(M), which is automatically a compact p-adic analytic Lie group.
Consider an element v € M ~ pM with the following property:

(*) For any open subgroup H C G one has W = Q,[H]v.

Then:
Theorem 3.1. For any closed subgroup I C G, one has:
. I \Grop 1
1) 1 _— =
W e,
. {an\GrUn| 1
2) lim — = —,
(2) Jim Goonl [T

1 .
where = = 0.

To prove theorem 3.1, we start with:

Theorem 3.2. For any closed subgroup J C G, one has:

. |(Gnvn)J|
1) 1 -
(W) fim e

n—o00 |Gn5n|

=0, unless J 1s trivial;
=0, unless J is trivial.

Proof. We begin with a general lemma about projective limits of finite sets.

Lemma 3.3. Let A := (Ap 41 %i;’n Ap)n>0 be a projective system of nonempty finite sets such that
(#) for all n > 0, there exists d(n) > 0, such that for all z, € Ay, |¢7;1r1,n($n)| =d(n)

and let B := (Bpy1 %i;’" Bp)n>0 be a projective subsystem of A. Set By := lim By, and By, =
= —

Pn(Bx) C By, where p, : By, — By, is the canonical projection. In particular, (Boon+1 %i;’"

Boo,n)nz() is a projective subsystem of B such that By = 1<£n Boo . Then

B B
(1) m(B) := lim | B and My (B) := lim |Boo,n| exist and belong to [0,1].

n—o0|Ay| n—oo | Ay|
(2) m(B) = meo(B).
Proof of lemma 3.3. For (1), set §(n) := max{|Bp+1 N ¢Ei17n(xn)|}xn63n < d(n). Then, by (#), one

gets % < % }ZZI < }ZZI Thus, m(B) exist and belongs to [0, 1] since, by definition, % € [0,1],

n > 0. The same argument obviously works for m..(B).

For (2), the inequality m.(B) < m(B) follows from the inclusion By, C By, n > 0. For the
opposite inequality, observe that for any n > 0 there exists m(n) > n such that ¢,n)n(Bmm)) =
Booy- Indeed, else, set By, = gb;l}n(Boo,n) C B,, and B;n’n := By N By, for m > n. Then
(Brs1.n = Binpn)m>n gives a well-defined projective subsystem of B. So, if By, , # 0 for all m > n,
then

- . .
0 # lim By, ,, C (@Bn) ~ (1<£an,00) = Boo \ Boo =0,

m
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which is a contradiction. Thus, one has

[Ammy| — d(m(n) —1)---d(n) | An| - | An| |[An|

Hence m(B) < my(B). O

m(B) <

Now, observe that A := (Gp41vn41 — GpVp)n>o satisfies assumption (#). Indeed, for any z,, =
gnVn € Gpo, and any T,11 = gni1Vpt1 € ng_L_le(xn) C Gp41Upy1 one has

|¢;H1-1,n ($n)| = [Sta‘bGn+1 (]771) : Sta‘bGn+1 ($n+1)] = [Sta‘bGn+1 (’Un) : Sta‘bGn+1 (anrl)]a

which only depends on n but not on z,, € G,v,."

So, to deduce (1) of theorem 3.2 from lemma 3.3, take B := ((Gpi1vn+1)” — (Gnvn)?)n>o-

Then By = (Gv)’ and Beo, = ((Gv)?)n, n > 0. From lemma 3.3, it is enough to show that
J

ILm % = 0. Denote by § and d; the dimension (as p-adic analytic space) of Gv and (Gv)’
n—00 nUn

respectively. By [082, Th. 2], there exist real (even rational) numbers p5 > 0 and p5, > 0 such that
nlggo p |G pvn| = ps and nll)rglo "7 ((Gv)” )| = ps,, respectively. (Observe that (Gv), = Gpuy.)
So, it is enough to prove that d; < . Suppose otherwise, then there would exist an open subgroup
H C G and an element g € G such that gHv C (Gv)’. But, from assumption (*), this implies that .J
acts trivially on W hence on M, as desired.

Similarly, to deduce (2) of theorem 3.2, define B, C Gpv,, n > 0, to be the inverse image of
(Gnv,)” C Gpo, under the canonical projection Gpv, — GpUy,. Then By = {z € Gv |yT =7, v €

|BOOJL|

J} and, by lemma 3.3, it is enough to show that lim
n—o0 |Gpuy|

= 0. Since J is a compact p-adic Lie

group, it is finitely generated. So, fixing a finite set v, ..., y(") of generators, By = ﬂ BC()?, where
1<i<r

BY = {x € Gv | )7 = T}. Now, BY is the finite disjoint union of p-adic analytic closed subspaces

indexed by the set spec(y(") of eigenvalues of 4() in W:

B = [ KGN,
Aespec(y(D)

where K (v, \) := {z € Gv | ¥z = Az}. Since spec(y?)) is finite, the K(y®,)) are also open
in Bgé). As in the proof of (1), by [O82, Th. 2], it is enough to prove that dim(By,) < d. Suppose
otherwise, i.e., dim(By) = d, then dim(Bc()fj)) = ¢ must hold for all i = 1,...,r. Thus, for each
i=1,...,r, there exists \(!) € spec(y(i)), such that K(’y(i), A(i)) has dimension ¢, hence contains an
open subset gHv (for some open subgroup H C G and some element g € G). But then assumption
(*) yields that v = A®) Id on W, hence on M. This means that J is trivial, as desired. [

Proof of theorem 3.1. Given any finite group F, write M(F') for the (finite) set of nontrivial minimal
subgroups of F. Equivalently, M(F) is the set of cyclic subgroups of F' with prime order. (Note that
M(F) =0 if and only if F = {1}.)

We first prove (1) by using (1) of theorem 3.2. Set (Gnv,) := UJeM(In)(Gn”n)Ja then one has

L () 1Guon) 1 _ T\Gatal _ 1 () 1Gawa) Y |, [(Gava)!
(-Tanr) = (~Tgmr)

m |G| |Gnvn _m |Gnvn |Gnvn .

1Since Gv C M is a smooth closed p-adic analytic subspace, say, of dimension 4, it even follows from [Se81, Rem. 1,
p.148] that the canonical projections Gp41vn+1 — Gpvy, are p°-to-1 for n > 0.
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[(Gnon)|

Gron] 0.
If I is finite, then I is isomorphic to I, for n > 0, so

Since |I,| — |I|, the only thing to prove is

0<

|(Gn”n),|< Z |(Gn”n)J|

—0(n —> o
|G nn| |Gnvn| ( )

- JeM(I)

by (1) of theorem 3.2.

If T is infinite, then I admits an infinite pro-p cyclic subgroup. Indeed, set K, := Id + p"P)M,,(Z,),
where i(p) = 1 for p # 2 and i(2) = 2. Then the p-adic exponential defines a homeomorphism
exp : p'®PM,,(Z,) ~ K, such that exp(aM) = (exp(M))*, M € p'PM,,(Z,), a € Z. So, K, is
a torsion-free open normal pro-p subgroup of GL,,(Z,) and I N K, is an infinite pro-p torsion-free
subgroup of GLy,(Zp). Now, for any g € (I N K,) \ {Id}, one has (g9) ~ 7Z,, as desired.

So, up to replacing I by such a subgroup, one may assume I ~ Z,. Fix any N > 0 and set
J=1r"CcI. Then, for any z,, € G, v, with stabilizer I, under I, note that z, ¢ (G,v,)” if and only
if J ¢ I, . But, since closed subgroups of I ~ Z,, are totally ordered for C, the latter is also equivalent

to I, CJ =1 or I, C I""" . So, z, ¢ (Guuvp)” implies |[Iz,| = [[: I,,] > [[: IP" "] = pNtL,
Now,
0 < [ I \Gnvn| < [T \(Grnvn ~ (Gnvn)”)] + [(Gnvn)| < 1 |(Gnvn)|
— |Gpon| T |Grnon| |Gpon|  — pNHL |Grnon
By (1) of theorem 3.2, one has % — 0, so
< <
0< nlggo |Gno,|  — pNtL

which yields the desired conclusion as N > 0 is arbitrary.
Finally, the proof for the projective situation (2) is exactly similar: use (2) (instead of (1)) of
theorem 3.2. [

the last inequality from the induction hypothesis (Cp,—_1).

4. PROOFS

4.1. Proof of theorem 1.1.  Denote the canonical epimorphism A, — (4,)° = 4,/(4,)o by v —
v0. Tt induces a canonical epimorphism of IT-module A,[p™®] — (4,)°[p™] hence, for any v € A,[p™]
an inclusion of open subgroups I, C II;,0y C II corresponding to a commutative diagram of finite
etale covers

S(’U) —_— S<UO>

v

S

But then, by the Riemann-Hurwitz formula, g,y > g(,0y. The same observation obviously works for

v, v° as well instead of (v), (v°). So we can restrict to the case when (A,)o is trivial (that is, A,

contains no nontrivial abelian subvariety isogenous to an isotrivial abelian variety), which we assume
from now on and till the end of this section.
In particular, to prove theorem 1.1, it is enough to prove the following.

2As gv > g(v), the assertion for g, is implied by the one for g(,). However, here we treat both cases in parallel, partly
because the proof for g, is somewhat simpler than the one for gy, and the former may help the readers to understand
the latter.
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Theorem 4.1. Assume that A, contains no nontrivial abelian subvariety isogenous to an isotrivial
abelian variety. Let v € Ty(A,)* and set v, := v mod p"T,(4,) € Ay[p"]*, n > 0. Then g,, — 0o and
Jiw,) — 00 (N — 00).

Indeed, assume that, say, the assertion for g(,) in theorem 1.1 does not hold. That is, there exists a
¢ > 0 such that for all n > 0 there exists v, € A,[p™] with Givny < ¢ but p"vy, # 0. From the inclusion
of open subgroups I,y C Il -n )0,y C I, 0ne gets gp—nim,)jvn) < G(v,) < € SO, One gets:

A"t == {v € A44[p"]" [ gy < ¢} # 0.
Furthermore, for any v € Ay[p"]; the inclusion of open subgroups II,, C Il C II yields, again,
Iipwy < Gy~ S0 {Ay[p"]7 fn>0 forms a projective subsystem of nonempty (finite) subsets of (4, [p" T —

Ay [p" ") n>0 hence:
0# lim Aglp"]e © lim Alp"]" = T (Ay)",

which contradicts theorem 4.1 for g, ). The case of g,, is just similar.

So, the rest of this section will be devoted to proving theorem 4.1.

4.1.1. The II-module W (v). For any v € T,(A,)*, define:
W () = Gyl C Vy(4,).
Then W (v) contains the Q,-submodule:
Weo(v) :== m Qy[H]v,
HCIl
where the intersection is over all open subgroups H C II. By definition v € Woo(v) so Weo(v) is
nonzero. Also, one can write Wy (v) = Q,[Ho]v for some open subgroup Hy C II. Indeed, for any
open subgroups H;, Hy C II observe that Q,[H;]vNQ,[Hz]v D Qy[H; N HzJv. So any open subgroup
Hy C II such that Q,[Hp]v has minimal Q,-dimension works.
In particular, the closed subgroup
Mao(0) = {7 € TT | 7 Wag(0) = Wio(v)} C TI

contains Hy hence is also open in II.
Furthermore, from the inclusion:

() M,y = My € Moo (v),
n>0

one obtains:

T =Tl (v) | [ (T~ Ty, ).

n>0
So it follows from the compactness of Il that there exists an integer N > 0 such that:
m=T(v)J J @~1,,),
n<N

hence:

Doy = [ Moy C Moo (v).
n<N

In particular II,,, C Ils(v), n>> 0. Similarly, IL,, C Ilx(v), n > 0.

But, since we are interested in estimating gy, , g(,,) for n > 0, one may replace II by Il (v) and
W (v) by W (v). So, from now on we assume that:

(*) For any open subgroup H C II, one has W (v) = Q,[H]v.
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4.1.2. The full level-p" structure S(n) — S. Set M := W (v) NT,(Ay) (=~ Z}"). We retain the notation
of section 3 and denote by p : [T — GL(M) the corresponding representation, and by G C GL(M) its
image. Then G is a compact subgroup of GL,,(Z,). So it is an infinite almost-pro-p compact p-adic
Lie group. (Here the infiniteness follows from corollary 2.4.)

Denote by II(n) <t II and G,, ~ II/II(n) C GL(M,) the kernel and the image of II % GL(M) —
GL(M,) respectively. Finally, set G(n) := p(II(n)) C G and Gy = p(Ily) (# = v, (v), etc). The
inclusion of open subgroups II(n) C II,, C I,y C II corresponds to the sequence of finite etale covers

S(n) = Sy, = S,y = S

where S(n) — S is Galois with group G,,. Write g(n) for the genus of the smooth compactification of
S(n).

4.1.3. g(n) — oo. As already noticed, |G,| — oo by corollary 2.4, so, by the Riemann-Hurwitz
formula, sup{g(n)} < oo if and only if sup{g(n)} < 1.
If sup{g(n)} = 1, then there exists ny > 0 such that g(n) = 1 for n > ny. Then the smooth

compactification S(ng) of S(ng) is an elliptic curve and that G(ng) = I<E1 (I1(ng)/II(n)) is a quotient

of m1(S(ng)) (« Z2), which contradicts corollary 2.4.

If sup{g(n)} = 0, then S(n) — S is a Galois cover of genus 0 curve with degree |G| — co. Set
i(p) = 1 for p # 2 and i(2) = 2. Then, replacing S by S(i(p)) if necessary, we may assume: (i) G, is
a p-group; and (ii) any element of Gy, = G/G(n) of order p is contained in G(n — 1)/G(n), hence in
the center of G,,. Indeed, (i) is clear and (ii) follows from a standard argument involving the p-adic
exponential, as in the proof of theorem 3.1. Now, we resort to the classification of finite subgroups
of PGLy(k) = Aut(PL). More specifically, it follows from [Su82, Th. 6.17, Case I] and condition (i)
above that either G, is a cyclic p-group or p = 2 and G,, is a dihedral group of order 2™*'. Moreover,
condition (ii) above forces m € {0,1} in the latter case. So, as |G| = 00, (Gpy1 = Gp)n>0 must be
a projective system of cyclic p-groups. Thus, G is abelian, which contradicts corollary 2.4. [

Remark 4.2. When £ = C and M is the whole p-adic Tate module T,(A,) (with A, principally
polarized), J.-M. Hwang and W.-K. To proved that a uniform bound (i.e., depending only on dim(A4,)))
for the growth of g(n) exists [HT06]. By classical arguments (Zarhin’s trick and specialization), such
a uniform bound for T},(A,) also exists only under the assumption that & has characteristic 0.

4.1.4. gy, — oo. First, for any connected finite etale cover ' — S of degree d, set A(T' — S) :=
2g(T) — 2
&, where ¢(T') stands for the genus of the smooth compactification of T. Then, if U - T — S

are connected finite etale covers, it follows from the Riemann-Hurwitz formula for U — T that
AU) > \NT).

Now, set A, := A(S(n) = S) and A, := A(Sy, = §). Thus, one has A1 > Ay, Ay,yy > Ay, and
An > Ay, n 2> 0. In particular, A := lim A, and A, := nhﬂnolo Ay, exist and A > A,.

n—0o00
As already noticed, |G| — oo (by corollary 2.4), and, as well, |Gpv,| — oo. Indeed, else, since

Gpo, ~ G/G,,, 11, would be a closed subgroup of finite index in II, hence open in II. Thus, by
assumption (*), W(v) = Q,[II,Jv = Qv is 1-dimensional, which contradicts corollary 2.4. So, g(n) —
oo if and only if A > 0, and g,,, — oo if and only if A\, > 0. But from paragraph 4.1.3, A > 0 holds.
Thus, it is enough to prove that A = A,.

To do this, we shall rewrite A\, and )\, in group-theoretic terms, by means of the Riemann-Hurwitz
formula. More specifically, for ¢ = 1,...,r, write I; , C G, for the image of the inertia group at P;
in G,, and denote by d;, and e;;, (resp. dn(P) and e,(P)) the exponent of the different and the
ramification index of any place of S(n) (resp. of the place P of S, ) above P; in S(n) — S (resp. in
Sy, — S). Eventually, for any place P of S,, , write d"(P) and e"(P) for the exponent of the different
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and the ramification index of any place of S(n) above P in S(n) — S,, . Recall that these data are
linked by the relations

ein = €"(P)en(P), dip=e€"(P)d,(P)+ d"(P).

Now, by the Riemann-Hurwitz formula, one has:

An::2g(0)—2+zdi’n, Ao, =2g(0) — 2+ ! YooY du(P).

e; Gy
1<i<y 0 |Gnon| 1<i<r PE€S,,, P|P;

Set €5, := A\, — Ay, > 0. Then observe

1 4" (P)
€n = €ins Cin &= T4 Z .
Gz (Geval ol (D)

Moreover, it is classically known ([Se68, Chap. IV, Prop. 4]) that

1 eM(P); — 1
N ]t P

PeSy,, P|P; §20

where e (P); denotes the order of the jth ramification group I,,(P); (with “lower numbering”) of any
place of S(n) above P in S(n) = S,,, j > 0. (Thus, €"(P)y = €"(P), and e"(P); =1 for j > 0.)

As G(1)/G(n) = ker(G,, — G1) is a p-group, so is I; o (1) := I; , N (G(1)/G(n)) = Ker(l;n — I;1).
Thus, (since p # char(k)) the natural surjection I; ,, — I;; induces an isomorphism (I; )+ — (£i1)+,
where (I; ;)4 denotes the wild inertia subgroup of I; ,, i.e., (I; )4 is the trivial (resp. unique g-Sylow)
subgroup of I; , if the characteristic of k£ is 0 (resp. ¢). Now, for integers 7 > 0 and n > 0, define
a subgroup (fi,n)j of I; , as follows: (fi,n)O := I;, and, for j > 0, (fi,n)j is the inverse image of the
jth ramification group (I;1); of I;1 under the above isomorphism (I;,)+ — (I;;1)+. (Observe, in
particular, that there exists jo > 0 such that (fi,n)j = {1} for j > jo.) For 7 > 0, the jth ramification
group (I;n); of I;n maps surjectively onto (I;1)(;/e, ,(1)] by the above isomorphism (1;n)+ — (Ii1)+,
where e;,,(1) := [1;n(1)| ([Se68, Chap. IV, Lem. 5]). From this, one obtains (/;,); = (fi,n)(j/ei,n(l)]
for j > 0. (Note that this is clear for j = 0.)

Moreover, define (f,)] to be the projective limit of {(fi,n)j}nzo. Thus, (I;)o coincides with the
inertia subgroup I; C G at P;, while, for j > 0, (INl)J is a finite, normal g-subgroup of I; which is

projected isomorphically onto (fm) j for each n > 0.

Lemma 4.3. Let I be a finite group and J a subgroup of I. Let X be a finite set on which I acts.
Consider the natural surjection of quotient sets: J\X — I\X. Then, for any x € X, the fiber of
this map at Iz € I\X consists of Jsz, where s runs over the representatives of J\I/I,. (Here I,
stands for the stabilizer of x in I.) In particular, if J is normal in I, then the cardinality of this fiber
]|z N J|

||| L |
Proof. Easy. O

coincides with

Now, there exists a natural bijection I; ,\G,, ~ {Q € S(n) | Q|P;}, hence one obtains
Ii,n\GnUn ~ Ii,n\Gn/(Gn)vn ~{Pe€S,, | P|P}.

More explicitly, fix Qo € S(n) with Qo|P; such that I;, is the inertia group at Qp. Then, for s € G,
The orbit I; ,sv, corresponds to the double coset I;,5(Gp)y,, which corresponds to the image P(s)
of Qf in S,,. (Here, we have adopted the action from the right.) For any normal subgroup J of I; ,
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consider the natural surjection J\Gpv, — I;;\Gpv,. Then, by Lemma 4.3, the cardinality of the
fiber of this surjection at the orbit I; ,sv, is equal to

|Ii,n||J N (Gn)sv, | _ |Ii,n||371J3 N (Gn)v,|
|| NV (Gr) s, | |J||3711i,n3 N (Gn)o, |

ein  (P(s));
(cin)y e (P(s))

.
If J = {1}, this coincides with — " while, if J = (Ii.n);, it coincides with
e"(P(s)) !

where (e;,); := [(I;n);].- From these, one obtains

D D DR e

PeSy,, I"|PZ SGIi,n\Gn/(Gn)Un

and

Z Cim en(P)j _ Z €in en(P(S))j _ |(Ii,n)j\GnUn|-

Pes”nv P‘Pl (el’n)j € (P) SGIi,n\Gn/(Gn)vn (el’n)] € (P(S))
Therefore, one has

e"(P); —1 €in)i 1
> (en()}) - (;n)] |(Tin) \Grvn| = —I|Gnonl
P€ESy,, P|P; L L

for each 5 > 0 and

o (ei,n)j |(Ii,n)j\Gnvn| 1
fin = Z ( |Gnvn| €in ’

i>0 » cn
Now, since
i (Iin)o, §=0,
(Lin)j = Tim)j/esny] = § Gimes (k= Dein(l) < j < kein(1) (0 < 3k < jo),
{1}, 7> joein(l).

one has

|(I~in)0\Gnvn| 1 |(fzn)k| |(I~zn)k\Gnvn| 1

in=|—"FH4—— — in(1 J J _
i ( |Gnvn| €in +6’ ( ) Z €in |Gnvn| €in
’ 0<k<jo ’ ’

110 \Groy| 1 1 . |(13.0) 1\ G| 1

:< Gronl 1Tnl) T en 2. (] Goval [Tl )

nUn i, i1 0<k<jo nvn | 7 k|

Now, by applying theorem 3.1 to I; and (I;)x, 0 < k < jo, one has €, — 0 (n — 00), as desired. O

4.1.5. g,y — oo. Here, the outline of proof is similar to the case of g,,, but the details are slightly
more complicated. With the notation of section 3, one has the following canonical epimorphism of
short exact sequences.

(1) 1 Ly, GL(M) ——=PGL(M) ——1

L |

1 — (Z/p")* — GL(M,) — PGL(M,) — 1.

Consider the projectivizations p : Il — PGL(M) , p,, : I — PGL(M,) of p and p, respectively.
Denote by G C PGL(M) and II(n) < II, G,, C PGL(M,) the image of p and p,, respectively. Finally,
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set G(n) :=p(Il(n)) C G.
With this notation, (1) induces the epimorphism of short exact sequences

(2) 1 ZyNG G G 1
1—(Z/p")" NGy Gn G, 1.
The inclusion of open subgroups :
(3) I(n) C I(n)
N N

an - H(vn> c I

corresponds to a commutative diagram of finite etale covers:

(4) S(n) —=S(n)
L
Son S(on) S,

where S(n) — S is Galois with group Gy and S(n) — S(n) is Galois with group (Z/p™)* N G,,. Write
g(n) for the genus of S(n).

4.1.5.1. g(n) — oo. First, observe that |G,| — oco. (Indeed, else, G = h£1 G, would be finite hence

G would be almost-abelian, which contradicts corollary 2.4.) So, by the Riemann-Hurwitz formula,
sup{g(n)} < oo if and only if sup{g(n)} < 1.

If sup{g(n)} = 1, then, up to replacing II by II(n), S by S(n) for some n > 0 large enough, one
may assume that g(n) = 1, n > 0, hence that S is an elliptic curve and that G is a quotient of
m1(S) (« Z?). In particular the normal subgroup I C G generated by the inertia subgroups lies in
ker(G — G) = Z,N G. But, by the semistable reduction theorem [SGAT7, Exp. IX, Th.3.6], each
inertia group is almost-unipotent, hence, being also scalar, it is finite. Thus, I is also finite, as an
abelian group generated by a finite number of finite abelian groups. Now, consider the short exact
sequence

1-I1—-G—-G/I—1.

Since G//I is a quotient of 72 and I is finite, G is almost-abelian. (Consider any open subgroup U of
G such that U NI = {1}.) This contradicts corollary 2.4.

If sup{g(n)} = 0, then S(n) — S is a Galois cover of genus 0 curve with degree |G,| — 0o. So,
according to the consideration of paragraph 4.1.3, up to replacing S by a finite Galois cover, one may
assume G ~ Zyp. Now, consider the short exact sequence

1—>Z}§ﬂG—>G—>§—>1.

Since G ~ Zyp is a projective profinite group, this exact sequence must split. Then, since Z;, N G lies
in the center of G and G is abelian, G is also abelian. This contradicts corollary 2.4.

4.1.5.2. g,y — oo. The proof is exactly similar to the one of paragraph 4.1.4 resorting to (2) of
theorem 3.1 instead of (1).

4.2. Proof of corollary 1.2. For each n > 1, set x,, := x mod p"Z, : I'y — (Z/p™)*. Set i(p) =1 for

p # 2 and i(2) = 2. Then, up to replacing k by the fixed field of ker(x;()) in k, one may assume that
Xip) : Tk — (Z /p"P)* is trivial. (Here, we have used lemma 2.1.) This technical reduction ensures
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that Tm(x,) C (Z/p")* is contained in the order p" ) cyclic subgroup 1+ p*P)Z/p"Z of (Z /p™)* (for
n > i(p)); this will be used in the proof of lemma 4.6.

4.2.1. The curves Sy, x. For each v, € Ay[p"]*, consider the restriction morphism pr, .y : m1(S,y) —
Iy (whose image coincides with T, ,) and the natural representation p(y,) : 71 (S(,)) = Autz jpn((vn))-
These define together with x,, := x mod p"Z,, a representation

-1

Ponx  T1(S(w,y) = Atz e ((Un)s ¥ = Xn (P (0,) (V) Plog) (1)

Then let Sy, y — S(,) be the etale Galois cover (defined over a finite extension ky, y/k) corre-

sponding to the open normal subgroup ker(py, ) C m1(S,,)), and denote by gy, , the genus of the
smooth compactification of Sy, y Xk, k.

Lemma 4.4. For any character x : Ty — Zy and vy, € Ay[p"]* the finite etale cover Sy, , — S has
the following properties:

(1) Sve Xko, o k= S, Xp,, k, and, in particular, gy, = gv, is independent of x.
(2) For any k-rational point s : Spec(k) — S, consider the specialization isomorphism of m(S)-
modules

sps : Ap[p™] = As[p™).
Then sps(vy) € As[p™](x) if and only if s : Spec(k) — S lifts to a k-rational point:

S'Un sX

l/ \\ Svn,x

S <——— Spec(k)

Proof. For (1), just observe that (S, Xk, k) = ker(pr,,)) Nker(py, )

= ker(pvn,x)|ker(pr(vn>)

= ker(py, ) Nker(pr,,))

= 7rl(Svn Xkyp, k)

For (2), denote again by s the section I'y, — m1(S) of m1(S) — Iy induced (up to conjugacy) by

s : Spec(k) — S, which identifies 'y, with the decomposition group at s. Then the existence of the
lift s,,  : Spec(k) = Sy, of s : Ty — m(S) is equivalent to the inclusion s(T'x) C m1(Sy, x)(=
ker(py,,y)), which can be rewritten as s(o) - v, = x(o)v, (0 € T'}) or, applying the specialization
isomorphism, o - sps(vy) = x(0)sps(vy). O

4.2.2. The projective system (Sp41,y — Sp,y). For each n > 0, define

Sny = H Sonx-
vn €An[pm]*

From theorem 1.1, there exists an integer N > 0 such that for all v € A, [p>] either pVv® = 0 or
Gu,x = Gv > 2. So S, can be written as a disjoint union S, = SS})( I 87%)(, where

1 2
St = 1T Sv,x and S, := 1T St -
vn €Ay [pn]*, pN v =0 vn €Ap[pn]*, pN vl #0

Then (Sp41,4(k) = Snx(k))n>0 is a projective system with transition maps induced by the canonical
morphisms Sy, \ — Spu,,x- They behave with respect to the decomposition S, , = 87%)( ]_[ST%)( as
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follows.
(5) Sé?l,x(k) Sé%izl,x(k)
_—
(*)
Sk (k) S\ (k)

Namely, {S&;(k)}nzg forms a projective subsystem of (S,41,y (k) = Sn,x(k))n>0, while {S%)((k)}nzg
may not (since some element of Sﬁ?l,x
(*) in the above diagram).

Now, suppose that corollary 1.2 does not hold. Then, for all n > 0, there exists s, € S(k) and there
exists v, € A, [p™](x) such that p"v, # 0. Up to replacing v, by |(vp)|p ", one may thus assume
that Sy, (k) # 0, n > 0. But this yields a contradiction.

Indeed, by the non-Tate assumption on x and lemma 4.4 (ii), one has

lim Sy (k) = 0.

(k) may map into Sﬁlzc(k), as shown by the diagonal arrow with

On the other hand, assuming lemma 4.5 below, the arrows (*) in (5) disappear for n > 0. So, the
projective system (Sy41,y (k) = Sp,x(k))n>0 restricts to a projective system (Sé?l,x(k) — Sy(fgc(k))n>>0.
But, from the Mordell conjecture for finitely generated fields of characteristic 0 [FW92, Chap. VI,
Th.3], S’,Si),x(k) is finite, n > 0. Hence S,, (k) is finite, n > 0, which yields the contradiction, using
the fact that a projective system of nonempty finite sets is nonempty.

Lemma 4.5. S&;(k) =0, n>0.

Proof. Assume that for all n > 0 there exists v, € A,[p"]* such that pNvd = 0 and S, , (k) # 0.
Then, up to replacing v, by p™ v, n, one may assume that v, € (4,)o[p™*, n > 0.

Also, denote by s, : Spec(k) — S the image of a k-rational point Spec(k) — S, y; it yields a
splitting sy, : I'y = m1(S) of the restriction epimorphism 7 (S) — L.

Let A, T and ¥, denote the images in Autz, (T,((Ay)o)) of m1 (S x k), 71(S) and sy (I'y), respectively,
under p. Since 71(S) = s, (Tk) - 71(S X k), we have ' = 5, - A.

As (Ay)o is (isogenous to) an isotrivial abelian variety, A is finite. Now, I' C Autyz (T,((A;)o0)) =~
GL24(Zy) (d := dim((A,)o)) is a compact p-adic Lie group, hence, in particular, it is finitely generated.
Since a finitely generated profinite group admits only finitely many open subgroups of given bounded
index and since [I" : £, ] < |A| < oo, there are only finitely many possibilities for the ¥, C I, n > 0.
Thus, there exists s € S(k) such that ¥;, = ¥, for infinitely many n > 0. Write |A| = p®m with
p fm. Then we have:

Lemma 4.6. Let s, t € S(k) with X5 = Xy If spi(vy) € Ay[p"](x), then sps(p®vy) € As[p™](x)-
Proof of lemma 4.6. The statement is trivial for n < a, so assume that n > a and write 6(o) :=
p(s(o)t(o)~1) € A. Also, since p(s(0)) € B = %, there exists 7 = 7, € 'y such that p(s(0)) =
p(t(7)). As aresult, one obtains d(c)v, = Xn(7)xn (0 1)v,. In particular, the order of x, (7)xn (0! €
(Z/p™)* divides the order of 6(c) € A, hence divides the order p®m of A. On the other hand, by
the assumption on x put at the beginning of section 4.2, x,(7)xn(c 1) lies in the order p”~*®) cyclic
subgroup 1 4 p*P)Z/p"7Z of (Z/p™)*. Thus, it follows that x,(7)xn(c ') € 1 4 p" Z/p". Thus, we
have

p(3(0))p"vn = Xn(7)p" v = Xn(0)p"vn,
which completes the proof. [
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It follows from lemma 4.6 that, up to replacing v, by p®v,14, one may assume that s : Spec(k) — S
lifts to a k-rational point s,, : Spec(k) — S, , for infinitely many n > 0, hence lim S, , (k) # 0: a
—

contradiction. OJ

Note that the above proof of corollary 1.2 only resorts to the (weaker) statement for g, in theorem
1.1. Using the (stronger) statement for g(,y, one gets the following variant of corollary 1.2.

Corollary 4.7. Assume that k is finitely generated over Q and that the set S# of all s € S(k) such
that T,,(As) admits a rank 1 I'y-submodule is finite. Then there exists N = N(A,S,k,p) > 0 such
that, for all s € S(k) ~ S# and T € As[p™), if (T) is T'j-stable then pN'T = 0.

Proof. Tt follows the lines of the proof of corollary 1.2. Up to replacing A — S by A xg (S~ §#) —
S~ S#, one can assume that S# = (). As above, for each n > 0, define

Sn = H S(vn)-

vn € Ag[p"]*

From theorem 1.1, there exists an integer N > 0 such that, for all v € A,[p™], either p¥v® =0 or
9wy = 2. So S, can be written as a disjoint union S, = Sy(Ll) 11 ST(LZ), where

87(11) = H S(vn) and 87(12) = H S(vn)-

v €Ay [p"]*, pNv0=0 vn €Ay [p™]*, pNv0#£0
Then (S,41(k) = Sn(k))n>0 is a projective system with transition maps induced by the canonical

morphisms S,y — S(p,)- They behave with respect to the decomposition &, = SS) ]_[8722) as
follows.

(6) St (k) 82, (k)

Suppose that corollary 4.7 does not hold. Then for all n > 0 there exists s,, € S(k) and there exists
vn € A, [p™] such that p™v, # 0 but (v,) is I'y-stable. Up to replacing v, by |(vy)|p~ vy one may
thus assume that S, (k) # 0, n > 0. Since S# = (), one has

lim S, (k) = 0.

.H
Then, assuming that ST(LI)(k) = @, n > 0, one obtains, by the same argument as in the proof of
corollary 1.2 (i.e., resorting to theorem 1.1 and the Mordell conjecture), that

Sn(k) =0, n>0,

as desired.

To prove that ngl)(k) = (, n > 0, suppose, on the contrary, that, for all n > 0, there exists
vy, € Ay[p™]* such that pNvd = 0 and Stway (k) # 0. Then, up to replacing v, by p™Nv, N, one may
assume that v, € (4,)o[p"]*, n > 0. Also, denote by s, : Spec(k) — S the image of a k-rational
point Spec(k) — S(,,y; it yields a section s, : ['y <= m1(S5) of the restriction epimorphism 7 (S5) — T'.
Following the notations of the proof of lemma 4.5 for A, I', ¥, , etc., one can choose, as in the proof
of lemma 4.5, a k-rational point s : Spec(k) — S such that, for infinitely many n > 0, ¥, = X,.
Then (v,) is stable under X3 = ¥, , which implies that sps({v,)) = (sps(v,)) is stable under T.
Thus, s : Spec(k) — S itself lifts to a k-rational point Spec(k) — S(,,), hence h£1 SH(k) # 0: a

contradiction. [
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Remark 4.8. (Variant in positive characteristic) To state a variant of corollary 1.2 in characteristic
g > 0, ¢ # p, one has to take care of the fact that Samuel’s theorem [Sa66], which is to play the part
of the Mordell conjecture, involves a certain non-isotriviality assumption. For more details, see the
subsequent paper [CT08].

Remark 4.9. For a prime p, a field k of characteristic ¢ # p, a scheme S of finite type over k£ and an
abelian scheme A over S, say that a character x : 'y — Z; is A/S-non-Tate, if, for any finite extension
k' of k and any s" € S(k'), x|r,, does not appear in Tj(Ay). By lemma 2.1, a non-Tate character is
A/S-non-Tate, a fortiori. Also, the proof of lemma 2.1 shows that x is A/S-non-Tate if and only if,
for any finitely generated extension &’ of k and any s’ € S(k'), x|r,, does not appear in T,(Ay). Now,
in the statement of corollary 1.2, replace the assumption that x is non-Tate by the weaker assumption
that x is A/S-non-Tate. Then the conclusion of corollary 1.2 is still valid, as the proof shows.

5. APPLICATION TO THE 1-DIMENSIONAL MODULAR TOWER CONJECTURE
5.1. G-curves and their stacks.

5.1.1. Notation. The main reference for this preliminary section is [BR07, §51-6]. Let S be a connected
scheme. An S-curve of genus g is a smooth, projective, geometrically connected S-scheme of dimension
1 the geometric fibers of which have genus g.

Given a finite group G of order prime to the characteristics of S, an S-G-curve with group G is
a pair (Y,«a), where Y is an S-curve and o : G — Autg(Y) is a group monomorphism. Two S-
G-curves (Y;,;), i = 1,2 with the same group G are S-G-isomorphic if there exists an S-scheme
isomorphism u : Y7 — Y3 such that uoy(¢)u™"' = as(g), ¢ € G. An S-G-cover with group G is a
pair (f : Y — X,«a), where f : Y — X is a Galois cover of S-curves and a : GSAutx(Y) is a
group isomorphism. Two S-G-covers (Y; — X,q;), i = 1,2 of a given S-curve X — S with the
same group G are S-G-isomorphic if there exists an X-scheme isomorphism wu : Y7 — Y5 such that
vy (9)u! = aa(g), g € G. Two S-G-covers (V; — X;,;), i = 1,2 with the same group G are weakly
S-G-isomorphic if there exists an S-scheme isomorphism v : X; — X5 such that the S-G-covers
(vwo fi: Y7 = Xo,a1) and (fy : Yo = Xo, ) are S-G-isomorphic. The groupoid of S-G-curves with
group G and S-G-isomorphisms is then equivalent to the groupoid of S-G-covers with group G and
weak S-G-isomorphisms. In the following, we will drop the « in our notation though it remains part
of the data.

Fix a finite group G and denote by C(G) the set of conjugacy classes of G. Given an element
C € C(G), write o(C) for the common order of the elements in C. Define also two maps
deg: 25\ — 750, C Y C(0),
- CeC(@)

Cc(G
569:22(5 ) 5 Zso, Cs > C(C’)O(C),
CeC(@)

and, for any integer g > 0, a map

10 25D = 22, C o 141G1(g — 1) + 5(Cldeg(C) — deg(C)).

Given any integer ¢ > 0 and C € Z(>CO(G)) such that 2 — 2g — deg(C) < 0, one can consider the
category fibered in groupoids Hy a.c —>7Spec(Z[ﬁ]) of genus v,(C) G-curves Y with group G such
that the resulting G-cover ¥ — Y/G has inertia canonical invariant C. (In case v,(C) ¢ Z>o, set
Hgc,c =0.) Equivalently, Hyc.c — Spec(Z[ﬁ]) is the category fibered in groupoids of G-covers of
genus ¢ curves with group G and inertia canonical invariant C. (More precisely, the genus g curve is
assumed to be equipped with an etale divisor of degree deg(C) and the inertia canonical invariant C
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is assumed to be one for the points on this etale divisor. This precision is crucial when C({1}) > 0.)
Finally, for any integer r > 0 such that 2 —2¢g —r < 0, write H,4 g, for the disjoint union of the H, ¢ c,
deg(C) =

Proposition 5.1. H, ¢ c is a Deligne-Mumford stack (with finite diagonal), smooth and of finite type
over Z[ﬁ] Its coarse moduli space Hg g c is a scheme normal and of finite type over Z[ﬁ]

5.1.2. Functoriality properties. Any group epimorphism p : E — E defines a morphism of monoids
W Z(>C0(E)) — Z( ( )), sending C' € C(E) to p(C) € C(E). Observe that deg(u(C)) = deg(C).
Geometrically, if f Y — X is a G-cover with group E and inertia canonical invariant C then M(C)

is the inertia canonical invariant of the G-cover Y/ ker(p) — X with group E. i
7,C(E))

Similarly, any group monomorphism ¢ : G — E defines a morphism of monoids v : 30 —
Z%G)) as follows. Consider the canonical map cg : G — C(G), sending g € G to its conjugacy

class ca(g) in G and let s : C(G) — G, C — s(C) a section of it. Then v sends C € C(E) to
S cales(@) o Te ) € 29D, Observe that deg(C) < deg(#(©)) < [E : Gldeg(C).
2eG\B/(s(0) )
Geometrically, if f :Y — X is a G-cover with group E and inertia canonical invariant C then l/(é)
is the inertia canonical invariant of the G-cover Y — Y/G with group G.
In the following, given an extension of finite groups 1 - K — F RN Q — 1, we will say that Q) acts

trivially on K if there exists a set-theoretic section s: Q — F of p such that s(q)ks(q)™' =k, q € Q,
k € K. (This is equivalent to requiring the canonical representation @ — Out(K) be trivial.) Then

note that for an extension of ﬁnite groups 1 = G 5 E % E — 1 where E acts trivially on G and for
any C € C(E), the set {g°®(©)] g€ C} forms a conjugacy class of G, which we denote by CoP(C ),

Then v(C) is simply (‘?‘))CO( p(C) ¢ Z(zo( )

Proposition 5.2. With the above notation, one has:

(1) p induces a stack morphism H, 5 & — Hy B Xzt [‘lﬁ] (again denoted by u), which is

7]
proper and etale 3 (but representable if and only if Z(E) injects in Z(E)). In particular, p
sends each connected component surjectively onto a connected component. Further, u induces

a stack morphism H - = Hy g7 X[k [|E\] (again denoted by ).
(2) v induces a stack morphism H, pe& — Ho ((€)),60(€) 2] [‘E|] (again denoted by v),

which is representable, finite and unramified. Further, v induces a stack morphism Hg,E,f —
H Hy.Gor XZ[ 1 [\E\] (again denoted by v ).
F<r<[E:G]F

Proof. Standard and similar to [BRO7, Prop. 6.14]. O

In particular, corresponding to p : G — {1} and i : {1} — G, one gets a canonical morphisms
p: Hgc.c — Mg jdeg(c)) Xzz[ﬁ] and v : Hga,c = My, (C),[seq(C)] X2Z[ﬁ] respectively, where M, 1,1
denotes the stack of genus g proper smooth curves equipped with degree r etale divisors. (In case
g & Lo, set My ) = 0.) From the former morphism, one obtains in particular that dim(H, g ) = 39—
347, unless Hgyg,r = (). Thus, the only cases when Hy ¢, is a curve correspond to (g,7) = (0,4), (1,1).

5.2. The representability problem. So far, the base scheme has been (an open subscheme of) the
spectrum of Z. From now on, we take the spectrum of a field k£ of characteristic > 0 as a base scheme.
In particular, various moduli stacks are considered to be ones over k.

3For the notion of (not necessarily representable) proper and etale morphisms between Deligne-Mumford stacks, see
[DM69, §4].
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5.2.1. Automorphism group of objects in Hg . Throughout this subsection, let f : ¥ — X be a
G-cover corresponding to a geometric point z : Spec(2) — Hq ., where Q is a separably closed
field. For each v € Aut(X), vo f gives another G-cover Y — X with group G. So, let Ef denote
the stabilizer of the G-isomorphism class of f in Aut(X) and refer to it as the base group of f. Set

B := X/E; and consider the resulting cover f 1Y i> x4 B. Then, by the definition of E, one sees
that f is a G-cover, say, with group F 7. Let R 7 be the image in B of the r marked points in X (given
as a part of data of x : Spec(2) — M4 g,r), and R, the ramification locus of the G-cover ¢ : X — B
in B. Moreover, define R to be the union of Ry and R, in B. If we define rg (resp. Ty, resp. rq) to
be the cardinality of R (resp. Ry, resp. R,), we have a trivial estimate: rp <7f +7, <7 +71, We
shall regard R, Ef, R, as reduced closed subschemes of B.

There exists a natural exact sequence 1 - G — Ef 2 E; — 1, where Ey acts trivially on G.
Indeed, by the definition of Ey, any e € E; admits a lift € of e to Y which is compatible with

Aut(f) % @ that is, a t(ege ') = a!(g), g EAut(f) and, hence, ege ! = g, g € G. In other words,
Ef can be identified canonically with the subgroup of Aut(Y) generated by G and the centralizer of
G in Aut(Y).

Since Hg g, are Deligne-Mumford stacks, the representability condition can be explicitly stated in
terms of the automorphism groups of the geometric objects.

Lemma 5.3. A nonempty open substack U — Hgq,r is representable if and only if G has trivial
center and, for any geometric point f : Y — X of U, the corresponding E; is trivial.

In general, H,4 g, is not representable, and the (rational) points on the coarse moduli space Hy g,
are not in one-to-one correspondence with the geometric objects classified by H, ¢ . However, we can
associate each rational point with a certain geometric object, as follows.

Let K be a field (containing k), and assume that Q = K*?. Assume, moreover, that the K*°P-
rational point of Hy ¢, defined by x is K-rational.

Lemma 5.4. (1) (B; Ry, Ry, R) admits a natural model (Br; Ry i, Ry i, Ric) defined over K.
(2) B, X and Y are Galois over Bg. (Note that Aut(B/Bg) = I'x.) In particular, if we set
Eny := Aut(Y/Bg) and Efk := Aut(X/Bg), we obtain the following natural commutative
diagram:
p: Erx — Aut(G)
3 3
p: Erx — Out(G)
via conjugation.
(3) In fact, p is trivial.
Proof. (1) The proof of the existence of a natural model Bg of B is just similar to [DE99, proof of
Th. 3.1] (¢f Rem. 3.2(b), loc.cit.) and done via descent theory. The descent of Ry, R, and R is
automatically done at the same time.
(2) B = Bg xg K*P is clearly Galois over Bg with Galois group I'x. The assertion that X and Y
are Galois over By follows essentially from the fact that K is the field of moduli of f as a G-cover.
(3) Again, this follows essentially from the fact that K is the field of moduli of f as a G-cover. O

We shall refer to Bx (resp. (Bk; Ry k, Rq,x, Ri)) as the canonical model of B (resp. (B; Ry, Ry, R))
with respect to the G-cover f. These models have the following functorial property:

Lemma 5.5. For each i = 0,1, let f; : Y; — X be a G-cover with group G; (corresponding to a
K*-rational point on Hy g, ,), and assume that we are given an X -morphism g : Y1 — Y. (Observe
that then g naturally induces a surjection Gi — Go compatible with g.) Moreover, set B; :== X/Ey,
and let B; i be the canonical model of B; with respect to the G-cover f;. Then we have an inclusion
E; C Eyy, and the natural K*P-morphism B1 — By induced by this inclusion descends to a K-
morphism By x — By k.



UNIFORM BOUNDEDNESS OF p-PRIMARY TORSION OF ABELIAN SCHEMES 21

If, moreover, Ey = Ey,, we have By, x = By k.
Proof. Immediate from the various definitions. [J

5.2.2. The abelian case. We continue the investigation in the previous subsection in the case that G
is abelian.
Lemma 5.6. In the situation of lemma 5.4, assume moreover that G is abelian. In the G-cover
f 1Y — B with group Ef, consider the subcover Y% — B corresponding to the quotient Ef — (Ef)ab.
Moreover, for each positive integer b, consider the subcover Zy — B of Y® — B corresponding to
the quotient (Ef)“b — (Ef)“b/(Ef)“b[b] =: Ny. Set e := |Ey| and define €' to be the exponent of the
abelian group (E)®. Then:
(1) Ny admits a subquotient isomorphic to G /G|eb].
(2) If b is divisible by €', then Ny is isomorphic to a subquotient of G and the natural action of
T'x on Ny (via conjugation) is trivial.
(3) If b is divisible by e, the ramification locus in B of the G-cover Z, — B is contained in Ef.
(4) Assume, moreover, that |G| is a power of a prime p and that the image of the cyclotomic
character x : ' — 7Zj has finite index c in Z,. Set v := v(p,c,r) := [log,(crp/(p — 1))].
Then, if b is divisible by both e and p'e’, then the G-cover Z, — B is unramified everywhere.
Proof. By applying the Hochschild-Serre spectral sequence to the exact sequence

1-G—Ef - Ef—1

of finite groups, one gets a natural exact sequence

of finite abelian groups. By the duality between abelian groups M and their character groups MY :=
Hom(M,Q/Z) (or, equivalently, by the Pontryagin duality), one gets a natural exact sequence

H*(E;,Q/Z)" — G — (Ep)™ — (EBf)™ — 0.
(Here, we have used the fact that G is abelian and that the action of Ef on G is trivial.) Thus, for
the natural morphism G — (E f)“b, the cokernel is killed by e’ and the kernel is killed by e.

(1) Let G denote the image of G in (Ef)“b. By the preceding argument, the quotient G is bigger
than G/Gle], that is, we have G — G/G[e] as quotients of G. Now,

Ny = (E)™/(Ef)™[0] > G/G[b] — (G/Gle])/(G/Gle])[b] = G/Gleb),
as desired.

(2) By the preceding argument, if b is divisible €', we have b(Ef)“b C G « G. On the other hand,
the b-multiplication map induces a natural isomorphism N, = (E 1)/ (E )20 [b] ~ b(E £)%. Thus, the
first assertion follows. Since all the construction is natural and I'x-equivariant, the second assertion
follows from lemma 5.4(2)(3).

(3) The ramification locus in X of the G-cover f :Y — X with group G is contained in R;. Thus,
for the G-cover f :' Y — B with group Ef, the inertia group I C Ef at any point of B ~ Rf is
injectively mapped into Ey. In particular, any element of such I is killed by e = |E¢|. So, if we denote
the image of I in (Ef)“b by I, we have I C (Ef)“b[e], as desired.

(4) Take any (closed) point P in Ry x C Bg. Then we have [K(P): K] <7; < r, hence

2 X(Creqr)] = 25 x(COX(Tx) : x(Tp))] < (22 X(Cio)][K : K(P)] < er.

* is trivial for some n > 0. Then we have

Suppose, moreover, that x(mod p") : I'x(py — (Z/p")
cr > [Zy: x(Cg(p)] > (Z/p™)] = (p— 1)p" ",

hence n < v. (Observe that this last estimate is also available for n = 0.)
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Now, consider the inertia group I, C N, at P for the abelian G-cover Z, — X. (In particular,
I C Ny = (Ef)“b.) I, admits a natural action of I'g(p), which is via the cyclotomic character. So,
by (2), the I'g(p)-action on I is via the p-adic cyclotomic character on the one hand and trivial on
the other hand. By the preceding argument, this implies that I is killed by p”, hence I; is killed by
e'p”. This, together with (3), proves the assertion. [

Corollary 5.7. In the situation of lemma 5.6, fix a prime p and assume that the image of the
cyclotomic character x : I'x — Zy, has finite index c in Z;,. Then there exist integers 8 := B(p,c,re) >
1 and § := (p,c,r,e) > 0, such that, if G is cyclic of order p™, then Ng is cyclic of order p* with
p>m—06; Zg — B is a G-cover with group Ng and unramified everywhere; Zg is Galois over B ;
and the natural action of 'k on Ng is trivial.

Proof. This is just summarizing (a part of) lemma 5.6. More specifically, set 5 := p”e and define 0 to
be the largest integer that satisfies p’|e. Then, N, 3 is isomorphic to a subquotient of G by (2), hence
it is a cyclic p-group. So, set |[Ng| = p*. Ns admits a subquotient isomorphic to G/G[ef] = G/G[p’]
by (1), hence 4 > m —d. Zg — B is a G-cover with group Ng by definition, and it is unramified
everywhere by (4). Zg is Galois over Bg by construction, and, finally, the natural action of I'x on
Npg is trivial by (2). O

5.3. The 1-dimensional modular tower conjecture.

5.3.1. Statements. For Fried’s modular towers and related conjectures, see [Fr95], [FK97], [D06]. Let
p be a prime, and (g, r) a pair of non-negative integers with 2 —2g—r < 0. Let G = {G,, 41 = Gn}n>0
be a projective system of finite groups and assume that G := lim G,, is p-obstructed in the sense that
G contains an open subgroup that admits a quotient isomorphic to Z,. Denote by X the set of prime
numbers which divide the order of (some finite quotient of) G. By [C07, Cor. 3.6] (see also [BF02],
[K04]), one has:

Lemma 5.8. For any field k finitely generated over the prime field of characteristic q € X (hence,

in particular, q # p),
lim Hy, g, » (k) = 0.
Now, a generalized variant of Fried’s modular tower conjecture is the following .

Conjecture 5.9. For any field k finitely generated over the prime field of characteristic q € X, there
exists an integer N := N(p,k,g,G,r) such that Hy g, (k) =0, n > N.

We formulate the d-dimensional version of this conjecture in characteristic ¢ > 0, as follows.
(MT4(q)) For any field k finitely generated over the prime field of characteristic ¢ € ¥, of characteris-
tic 0, any k-scheme S of finite type with dim(S) < d and any k-morphism £ : S — Hg g, », there exists
an integer N := N(p, k, g, G,r,S,§) such that S, (k) =0, n > N. Here, we set S, := S xyg o Ho G

g9,4Q,T
First, we have the following corollary of lemma 5.8:
Corollary 5.10. (MTy(q)) holds for all ¢ > 0. In particular, conjecture 5.9 holds for (g,7) = (0, 3).

Proof. Since S, is of finite type over k£ and 0-dimensional, S, (k) is a finite set for any n > 0. Thus,
the assertion follows from lemma 5.8. [

Now, the main result in this section is:

Theorem 5.11. (MT,(0)) holds. In particular, conjecture 5.9 holds for (g,r) = (0,4),(1,1) and
q=0.

4This is a weak version in the sense that p is fixed. For the formulation of a version of the modular tower conjecture
which allows p to vary, see [Fr06, §6]



UNIFORM BOUNDEDNESS OF p-PRIMARY TORSION OF ABELIAN SCHEMES 23

5.3.2. Proof. To clarify the structure of the proof of theorem 5.11, we shall also introduce the d-
dimensional generalization of corollary 1.2 in characteristic ¢ > O:

(UBg4(q)) Let k be a field finitely generated over the prime field of characteristic ¢, S a scheme of finite
type over k with dim(S) < d, and A an abelian scheme over S. Let p be a prime # g and x : I'y — Zj a
non-Tate character. Then there exists an integer N := N (A, S, k, p, x), such that As[p>](x) C As[p"]
holds for any s € S(k).

Theorem 5.12. (UBy(0)) holds for d < 1.

Proof. First, (UBy(q)) for any ¢ > 0 follows from the definition of non-Tate characters. (Indeed, if
S is of finite type over k and dim(S) = 0, S(k) is a finite set. So, we may treat only finitely many
abelian varieties A (s € S(k)).) Next, to prove (UB1(0)), assume that S is of finite type over k and
dim(S) = 1. By replacing S by 57, we may assume that S is reduced. By (UBg(0)), we may replace
S by an open dense subscheme freely. So, we may assume that S is regular and separated, hence
smooth and separated over k. Finally, treating S componentwise, we may assume that .S is connected.
Suppose that S is not geometrically connected. Then S(k) = () and there remains nothing to prove.
Thus, in summary, we may assume that S is a smooth, separated, geometrically connected curve over
k. Now, the assertion follows from corollary 1.2. [J

Now, theorem 5.11 formally follows from corollary 5.10, theorem 5.12 and the following (for d = 1
and ¢ = 0):
Proposition 5.13. Assume that (UBy(q)) and (MTq—1(q)) hold. Then (MT4(q)) holds.
Proof. Denote by G(n) the kernel of G — G,,. Since G = @Gn is p-obstructed, there exists an open
subgroup U of G which admits a quotient isomorphic to Zj,. For some ng > 0, G(ng) is contained in
U. As G(ng) is open in U, its image in the quotient is open, hence G(ng) also admits a quotient Z
isomorphic to Z,. For each n > 0, denote by Z(n) the image of G(n+no) in Z, and set Z,, := Z/Z(n).
Thus, Z, ~ Z/p™™Z, where 0 < m(0) < m(1) < --- < m(n) < --- — oo. Now, by applying the
functoriality properties in 5.1.2 (especially, proposition 5.2) to

Grring = G/G(n+ng) = G(no) G (n +no) - Z/Z(n) = Za,

we may reduce the problem to the case where G is isomorphic to Z, and G, is isomorphic to Z/ pm(n),

As in the assertion of (MTy(q)), let S be a scheme of finite type over k and dim(S) < d. Let S, be
the closure of Sy, (k) in S,,. Denote by Z,, the (finite) set of irreducible components of S}, of dimension d.
Since Sy41 — Sy, is finite, {Z,,},,>0 forms a projective system. Thus, one gets the following dichotomy:
either Z,, = ) for n > 0 or NmZ, # (. The first case can be reduced easily to (MT; 1(q)). In the
second case, take an element of imZ,, # (), and, for each n > 0, let T,, C S/, C S, be the corresponding
irreducible component of dimension d, which is regarded as a reduced closed subscheme. (Observe
that T),(k) is dense in T,.) Let F, denote the function field of the integral scheme T}, and K,, the
perfect closure of F),. (That is, K,, = F), for ¢ =0 and K,, = UsZUFﬂis for ¢ > 0.) Set F := Fy.

First, we claim that the natural map ', — 'y is surjective, which is equivalent to saying that
the natural map I'r, — [’y is surjective. Indeed, for the latter surjectivity, take a nonempty open
subscheme U,, of T}, which is normal. Then I'r,, — I’y factors through I'r, — m1(U,). So, it suffices
to prove that m1(U,) — T\ is surjective. But this is clear, as U, (k) # 0. In particular, since the
cyclotomic character x : I'm, — Z; is the composite of I'y, — T’y and the cyclotomic character
[y — Zj, the index c of x(I'f,) in Z, is independent of n.

Next, as Tp+1 — T}, is a finite morphism between d-dimensional schemes, we may regard Fj, ;1 as
a finite extension of F,. So, we may take an algebraic closure Q = F of F, so that F,, C Q. Observe
that Q = K,, = K;* for each n > 0. Thus, S, admits a natural Q-rational point, which induces
(Tn)n>0 € &iLan,Gmr(Q). Let f, : Y, — X, be a G-cover with group G,, over {2 corresponding to z,,.
(Note that  is not only separably closed but also algebraically closed. Thus, by the very definition
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of coarse space, such f, exists.) Since (z,)n>0 is an element of the projective limit, we may assume
that X,, = Xy =: X and that f, : ¥, — X is a subcover of fne1 : Ypp1 — X (compatibly with
Gny1 — Gp). Let By, C Aut(X) be the base group for f,. As Ey D Ey, D --- are inclusions of finite
groups, there exists ny > 0 such that Ey, = Ey, for n > n;. So, by renumbering if necessary, we may
assume that Ey = Ey =: E. Let B, g, be the canonical model over K, of B = X/E with respect
to fn, as in lemma 5.4. Then, by lemma 5.5, we may identify B, k, with By k, Xk, Kn. So, we shall
write Bn,Kn = Bg,,.

Let 1 —» G,, — Efn — E — 1 be the exact sequence as in 5.2. In the G-cover fn : Y, — B with
group E ., consider the subcover Y% — B corresponding to the quotient Efn — (E fn)“b. Moreover,
for each positive integer b, consider the subcover Z,;, — B of erb — B corresponding to the quotient
(Br)® = (Ep,)®/(Ey,)®[b] =: Nnyp.

Now, take = B(p,c,m,e) > 1 and § = d(p,c,r,e) > 0 as in corollary 5.7. Then, since G, is a cyclic
group of order p™™), Ny g is cyclic of order P with p(n) > m(n) — 6; Znp — B is a G-cover with
group N, g and unramified everywhere; Z, 5 is Galois over Bk, ; and the natural action of 'k, on
Ny, is trivial. The natural surjection E’an — Efn induces a surjection Ny 15 — N, 3. Moreover,
we may consider Z,, 3 — B as a subcover of Z,,1 3 — B, compatibly with the latter surjection.

There exist a finite extension F’ of F' included in K and a proper, smooth, geometrically connected
curve Bpr over F', such that Bp: x g K is Kg-isomorphic to Bg,. When ¢ = 0, we have Ky = F' = F.
when ¢ > 0, we may assume that F' = F7° for some s > 0, up to replacing F' by an extension. Now,
set k' :=k for ¢ = 0 and k' := k9 " for ¢ > 0. Also, set F := F, for ¢ =0 and F := FI™ for qg>0.

When g = 0, set T), := Ty, and, when ¢ > 0, set T, = Tf{_s. Note that 77 is an integral scheme of
finite type over k' with function field F}. There exists a nonempty open subscheme U of T} such that
B — F' extends to a proper, smooth, geometrically connected scheme By — U. Let J := PiC%U U
be the jacobian. Now, applying (UB4(q)) to the abelian scheme J over U and the cyclotomic character
X : T — Zy, we see that there exists an integer N := N(J,U, k', p, x), such that Js[p>](x) C Js[p™]
holds for any s € U(K').

We have a surjection T,(Jp/) — N, 5 =~ Z/p"™ as modules over T r; = I'k,, hence, by duality,
an injection Z/p™(1) =~ (N 5)V < Jm[p™] as ['pr-modules. Since m(n) — oo as n — oo, there
exists an ng such that p(ng) > N. Take a nonempty, open, normal subscheme V;,, of 7=1(U), where
m : T, — Ty denotes the natural morphism induced by T, — Tp. Since Jv,, = J Xy Vy, is an
abelian scheme over V,,,, the action of FFT’LO on Jp[p™®] factors through T'py — 7m1(V;,). Thus, the
injection (Np, )Y < Jp[p™] as I'p; -modules extends to an injection (Nno,/g)‘v/n0 — Jy,, [p™] as
(ind-)finite-etale group schemes over V,,,.

Recall that Ty, (k) is dense in Ty, hence T}, (k') is dense in Ty, . In particular, Vi, (k") # 0. Take
Sng € Vpo(K') and let s denote the image of s,, in U. Considering the fiber at s,, of the injection
(Nno,ﬁ)&m — Jv,, [p>], one gets the injection (Ny, 5) < Js[p™]. Since (Nyp, ) =~ Z./p*™ (1) and
wu(n) > N. This contradicts the choice of N.

Thus, the proof of proposition 5.13 is completed. [
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